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Correcting Instrumental Variation and Time-Varying
Drift Using Parallel and Serial Multitask Learning

Ke Yan, David Zhang, Fellow, IEEE, and Yong Xu, Senior Member, IEEE

Abstract— When instruments and sensor systems are used to
measure signals, the posterior distribution of test samples often
drifts from that of the training ones, which invalidates the initially
trained classification or regression models. This may be caused by
instrumental variation, sensor aging, and environmental change.
We introduce transfer-sample-based multitask learning (TMTL)
to address this problem, with a special focus on applications in
machine olfaction. Data collected with each device or in each
time period define a domain. Transfer samples are the same
group of samples measured in every domain. They are used by
our method to share knowledge across domains. Two paradigms,
parallel and serial transfer, are designed to deal with different
types of drift. A dynamic model strategy is proposed to predict
samples with known acquisition time. Experiments on three real-
world data sets confirm the efficacy of the proposed methods.
They achieve good accuracy compared with traditional feature-
level drift correction algorithms and typical labeled-sample-based
MTL methods, with few transfer samples needed. TMTL is a
practical algorithm framework which can greatly enhance the
robustness of sensor systems with complex drift.

Index Terms— Drift correction, machine olfaction, multitask
learning (MTL), transfer learning, transfer sample.

I. INTRODUCTION

IN THE field of sensors and measurements, sometimes
the training and test samples are collected under different

conditions. For example, suppose a company has produced a
batch of devices of the same model to classify two kinds of
signals. Generally, one would collect training data with one
device, train prediction models using pattern recognition algo-
rithms, and wish the models applicable to all the other devices.
However, because of the variations in the fabrication of sensors
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and devices, the responses to the same signal source may
not be identical for different devices. In addition, the sensing
characteristics of the sensors, the operating condition, or even
the signal source itself, can change over time. These factors
lead to a drift of posterior distribution of the measured
variables [1], which will degrade the prediction accuracy.

A typical application plagued by this problem is machine
olfaction [2], which senses gas using electronic noses
(e-noses). An e-nose comprises an array of chemical sen-
sors and a pattern recognition system [3]. It is capable of
predicting the type or concentration of odors. E-noses have
been adopted in areas such as food, environmental monitoring,
and disease analysis [4]–[6]. Nevertheless, the responses of
gas sensors are often influenced by the instrumental variation
and time-varying drift as mentioned above [2], which have
greatly affected the robustness of e-noses and hindered their
popularization. Besides, instrumental variation also affects
spectroscopy [9], [12].

Transfer learning can be used to address this challenging
problem. Assuming the training data are from a source domain
where labeled samples are sufficient, and the test data are from
a target domain where labeled samples are scarce or not avail-
able, transfer learning aims to improve the prediction accuracy
in the target domain by leveraging the knowledge from both
domains [1]. Multitask learning (MTL), a type of inductive
transfer learning method, has been successfully applied in
several fields [7]–[10]. Besides, when dealing with the time-
varying drift problem, there is a class of algorithms known
as concept drift adaptation [11]. However, most MTL and
concept drift adaptation algorithms rely on labeled samples
in the target domain, which are sometimes hard to acquire in
real-world applications. For instance, when a breath analysis
system based on an e-nose [6] is produced in batch, it is
impractical to collect patients’ breath samples with each new
device to update its model. In this situation, it is a good
idea to use transfer samples to obtain knowledge from the
target domain [2], [5], [12]–[14]. In the field of machine
olfaction, transfer samples often consist of standard gases,
which are reproducible and easy to acquire. A group of
transfer samples can be measured in both source and target
domains (e.g., old and new devices). Then, the mapping
information between domains can be obtained by analyzing the
correspondence relationship between transfer sample groups.
Finally, the target data can be transformed to match those
of the source [2], [5], [12]. This frequently used method is
known as variable standardization.

While this method is easy to implement, its accuracy is not
promising when the drift is complex. In this paper, we present
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a novel method named transfer-sample-based MTL (TMTL)
to predict data with drift. It combines MTL with transfer
samples, thus has strength in both accuracy and practical
convenience. In the proposed algorithm, labeled source data
and a group of transfer samples are leveraged to learn the
source and (multiple) target models jointly. The type of drift
determines the relationship between domains, so we designed
a parallel and a serial transfer paradigm for different drifts.
To predict the sample measured in a specific time and handle
noise in transfer samples, a dynamic model strategy using a
combination of neighboring models is proposed.

Three real-world data sets with different types of drifts
are used to evaluate the proposed algorithms. Experimental
results show that TMTL achieves better prediction accuracy
on data with drift compared with other typical algorithms in
the fields of machine olfaction and MTL. The rest of this
paper is organized as follows. Section II briefly reviews the
related works in MTL and machine olfaction. Section III
describes the proposed TMTL in detail. Section IV presents
the experimental configurations and results, along with some
analysis. Section V concludes this paper.

II. RELATED WORK

Following the terms in transfer learning [1], we refer to
the data without drift as data from the source domain, and
data with drift as data from the target domain. Generally,
some samples from the target domain are needed to obtain
knowledge about the domain. According to the type of the
target samples, we classify drift correction algorithms into
three categories, i.e., those based on labeled target samples,
unlabeled target samples, and transfer samples.

In the setting of labeled-sample-based methods, some
labeled data from the target domain are available, but not
sufficient to retrain a target model. In this case, one intuitive
idea is to use the source and the target data together to
train a model, meantime increase the weights of the target
samples to ensure the model’s feasibility in the target domain.
For instance, Zhang and Zhang [15] combined e-nose data
before and after drift into the objective function of an extreme
learning machine. Although easy to implement, this kind
of method often needs many target samples to capture the
variance in the target domain. In the case of time-varying
drift, drifted data come in the form of streams. Concept drift
adaptation methods make use of newly arrived labeled data
to update the prediction models [11], [16]. As an example,
Vergara et al. [17] adopted an ensemble strategy to cope with
time-varying drift in e-noses. Samples collected in different
time were split into several batches. Then, a prediction model
was trained on each batch. Finally, for a test sample in batch k,
the outputs of models 1 to k − 1 were fused by weighted
majority voting, with the weights estimated from the prediction
accuracy of the model on batch k − 1. The method requires
all samples in prior batches to be labeled, which is often
impractical.

MTL uses a different strategy to fuse knowledge from differ-
ent domains. Models of all domains are learned jointly. In the
objective function of an MTL method, the prior knowledge
about the relationship of the models and the features can

be specified. Consequently, information can be shared properly
among the tasks, so as to enhance the generalization ability of
all models, especially for the target domain which has less
labeled samples. Regularized MTL (RMTL) was proposed
in [7], in which a regularization term was introduced to penal-
ize the deviation among multiple models. Binfeng et al. [9]
applied RMTL to transfer models between near-infrared spec-
tra measured in different conditions (e.g., multiple devices)
and achieved good results. In [8], Zhou et al. formulated
disease progress prediction as a multitask regression problem,
with learning the model at each time period as a task.
Models of neighboring time periods were required to be close
to capture the intrinsic temporal smoothness. Group Lasso
regularization was also employed for feature selection.

The second category of methods is unlabeled-sample-based
ones, whose main advantage is that unlabeled target samples
are much easier to acquire in practice. Transductive transfer
learning [1] and semisupervised learning algorithms can be
adopted in this setting. A transfer learning approach based on
weighted geodesic flow kernel and a semisupervised classifier
based on manifold regularization were used in [18] to address
sensor drift in e-noses. Liu et al. [30] tried to apply deep
learning methods to extract robust features from unlabeled gas
samples and tackle sensor drift implicitly. The maximum inde-
pendence domain adaptation algorithm proposed in [19] can
handle different types of drift flexibly. Generally, unlabeled-
sample-based methods are less accurate because of the limited
information contained in the unlabeled samples.

Transfer samples are widely used in machine olfaction [2]
and spectroscopy [12]. They are commonly a group of standard
gases with selected types and concentrations. After being
measured in both source and target domains, they can be used
to estimate the mapping between domains. They are more
informative than unlabeled target samples, meanwhile more
convenient to obtain than labeled target samples in many real-
world applications. Most existing transfer-sample-based meth-
ods concentrate on feature-level correction. Algorithms based
on variable standardization build regression models using the
transfer samples. Each variable in the source domain is fit with
one or multiple variables in the target domain using regression
algorithms such as robust fitting and ridge regression [5], [13],
so as to transform the target data to the source domain. Then,
the corrected data can be predicted by the source models.
Algorithms based on component correction (CC) are also
popular. CC-PCA [20] finds the drift-related direction in the
feature space by applying principal component analysis to
the transfer samples. Then, the component on the direction
can be removed from all data. Orthogonal signal correc-
tion (OSC) [21] is a CC-like method that relies on labeled
target samples. It pools samples with and without drift and
finds the undesired components by calculating the subspace
that is orthogonal to the labels. One drawback of CC-like
methods is that when the drift is complex, it may be difficult
to accurately separate the directions of useful information and
drift [22]. Recently, Yan and Zhang [14] proposed a novel deep
learning method to learn drift-corrected features. However, it is
computationally intensive and performs better with enough
training samples.
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III. TRANSFER-SAMPLE-BASED MULTITASK LEARNING

In this section, we will first consider the situation with
only one source and one target domain. Transfer-sample-based
coupled task learning (TCTL), the basic form of TMTL, will
be introduced for this situation. Note that TCTL was described
in our previous work [23], but we have improved its model
similarity term in this paper. Then, we will extend TCTL to
TMTL which involves multiple domains, and describe a paral-
lel paradigm and a serial one to deal with different interdomain
relationships. Finally, we will propose a combination of the
two paradigms and a dynamic model strategy.

A. Transfer-Sample-Based Coupled Task Learning
In order to depict the problem setup more concretely,

we take calibration transfer as an example. The calibration
transfer is the term used in machine olfaction and spectroscopy
for transferring the model of one device to another. Suppose
an e-nose (the source device) has been utilized to collect some
training samples. A classification model was trained on these
data. Now, we have made a new e-nose (the target one) of the
same model. A set of standard gas samples has been measured
with both the old and the new e-noses. Then, TCTL can be
used to learn the classification model of the new device.

Denote X S ∈ Rn×p as the matrix of source training data
with each row as a feature vector; n is the number of labeled
source samples; p is the number of variables; yS ∈ Rn is
the label vector; TS ∈ Rnt ×p and TT ∈ Rnt ×p are matrices
of the source and the target transfer samples, respectively;
nt is the number of transfer samples; βS , βT ∈ Rp are the
parameter vectors of source and target prediction models to
be estimated, respectively. The objective function of TCTL is
presented as the following:

min
βS,βT

�(X S, yS,β S) + λ1‖TSβS − TT βT ‖2
2

+ λ2‖X SβS − X SβT ‖2
2 + μ

p∑

j=1

w2
j

(
β2

S, j + β2
T , j

)
. (1)

In (1), the first term represents the empirical loss function
for the source training samples. ‖TSβS − TT βT ‖2

2 is the
transfer sample term. It requires the corresponding source and
target transfer samples to be close after they are, respectively,
projected by the source and target parameter vectors. The
term ‖X SβS − X SβT ‖2

2 encourages similar source and target
parameter vectors by requiring that they project the source
training samples to similar values. The last term is a weighted
shrinkage term. βS, j stands for the j th element of β S . The
weights are defined as

w j =
√√√√

nt∑

i=1

(tS,i j − tT ,i j )2, (2)

where tS,i j means the element in the i th row (sample) and
j th column (variable) of TS . The shrinkage term penalizes
the variables that have large deviation between the source and
target transfer samples. λ1, λ2 and μ ≥ 0 are regularization
parameters controlling the strength of the terms.

The transfer sample term is key for information trans-
fer between domains. It aligns the transfer samples of the

two domains in their respective projected spaces, so as to
reduce the interdomain drift. Thus, the discriminative infor-
mation of the labeled source samples can be used in the target
domain. However, if we rely solely on the transfer sample
term to infer βT from βS , the control over βT will be too
weak. Because the number of transfer samples is often small,
there will be infinite solutions to βT that can minimize the
transfer sample term and make it zero. Therefore, we add
the model similarity term ‖X SβS − X SβT ‖2

2 to introduce
an inductive bias reflecting the prior belief that the models
resemble each other. To reduce the interdomain difference
before applying TCTL, one can preprocess the source and
target data separately with standard normal variate (SNV) [2],
i.e., each variable is centered and scaled by the mean and
standard deviation calculated from the transfer samples of its
domain. Additionally, many MTL algorithms [7]–[9] simply
penalize the deviation between two parameter vectors, e.g.,
minimizing ‖βS − βT ‖2

2. This requirement is too strict when
the interdomain difference is large. Our model similarity term
relaxes this requirement. The two parameter vectors may not
be identical, but their difference should be orthogonal to the
space spanned by the source training samples. Experimental
results show that the model similarity term in this form is
better than that in the traditional form.

In [13], we proposed a strategy to improve the transfer abil-
ity of prediction models of e-noses, namely, standardization
error-based model improvement (SEMI). The motivation is
that some variables inherently contain more drift that cannot
be eliminated by simple standardization methods such as SNV.
Hence, it will be beneficial to make the model depend less
on such variables. The amount of drift of a variable can be
measured by the SE, namely, the L2 norm of the difference
between the variable in the transfer samples of two domains
[see (2)]. The mean of SEs can be scaled to 1. SEMI shrinks
the variables with large SEs, making the trained models less
sensitive to interdomain drift.

1) Classification: Logistic Loss: The proposed framework
can be coupled with various loss functions. Logistic loss
function is demonstrated in this paper because logistic regres-
sion (LR) is a popular and effective classifier. We denote
x(i) ∈ Rp as the i th training sample and y(i) ∈ {0, 1} as its
label X = [x(1), . . . , x(n)]T , y = [y(1), . . . , y(n)]T . In binary-
class cases, the decision function of LR is a sigmoid function
hβ(x) = 1/(1 + e−βT x). A test sample x is classified into the
positive class, if hβ(x) ≥ 0.5. The logistic loss function can
be written as

�L(X, y,β) = 1

n

n∑

i=1

y(i) log hβ(x(i))

+ (1 − y(i)) log(1 − hβ(x(i))). (3)

Combining (3) with (1), we formulate the objective function
of TCTL with logistic loss as

JL(βS,βT ) = �L(X S, yS,βS) + λ1

2nt
‖TSβS − TT βT ‖2

2 + λ2

2n

×‖X SβS − X SβT ‖2
2 + μ

2

p∑

j=1

w2
j

(
β2

S, j +β2
T , j

)

(4)
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whose gradient is given by

∂ JL

∂βS
= 1

n
X T

S (hβ(X S) − yS) + λ1

nt
T T

S (TSβS − TT βT )

+ λ2

n
X T

S X S(βS − βT ) + μWβ S

∂ JL

∂βT
= −λ1

nt
T T

T (TSβS − TT βT ) − λ2

n
X T

S X S(βS − βT )

+ μWβT

W = diag
(
w2

1, . . . , w
2
p

)
. (5)

The problem above can be solved using numerical optimiza-
tion methods such as conjugate gradient. In K -class cases,
K LR models are trained using the one-versus-all strategy and
x is classified into the class whose decision function has the
largest value.

2) Regression: Squared Loss: For regression problems,
the squared loss function is adopted in this paper. The objective
function of TCTL with squared loss is

JS(β S,βT ) = 1

2n
‖X SβS − yS‖2

2 + λ1

2nt
‖TSβS − TT βT ‖2

2

+ λ2

2n
‖X SβS − X SβT ‖2

2

+ μ

2

p∑

j=1

w2
j

(
β2

S, j + β2
T , j

)
. (6)

By setting its gradient to zero, the closed-form solution to
βS and βT can be derived as follows:

(
βS
βT

)
= (A1 + A2 + A3)

−1b, (7)

where

A1 =
(

P 0
0 0

)
, A2 = λ1

nt

(
T T

S TS −T T
S TT

−T T
T TS T T

T TT

)

A3 =
(

λ2 P + μW −λ2 P
−λ2 P λ2 P + μW

)
, b = 1

n

(
X T

S yS
0

)

P = 1

n
X T

S X S, W = diag
(
w2

1, . . . , w2
p

)
.

B. TMTL-Parallel and TMTL-Serial

TCTL only exploits information from two domains. In real-
ity, there are situations of multiple domains. If a number of
new devices have been manufactured, each new device can
be regarded as a target domain which is different but related
to each other and the old device (source domain). In another
situation, a device may have been used to collect data for a
long time. Knowing its slow and irregular time-varying drift,
we have collected transfer samples periodically. In this case,
each period can be viewed as a target domain which has
relatively small intradomain drift. Each domain is different
but related with its previous domain, i.e., the time period prior
to it. TMTL shares information across many domains, which
would probably be superior to TCTL. For instance, transfer
samples in one domain may contain noises or outliers due
to the uncertainty in the measurement process. In TCTL, the
noises and outliers will mislead the model transfer process.

However, in TMTL, the influence of noises and outliers to one
model can be mitigated owing to the similarity requirements
with all the other models.

Considering the relationship between domains, we have
designed two paradigms, namely, TMTL-parallel and
TMTL-serial. TMTL-parallel is suitable for situations such
as calibration transfer, where multiple domains are similar
to each other. Here, we use a subscript k to denote the
variable in the kth target domain, and a subscript 0 to denote
the variable in the source domain for simplicity. The total
number of target domains is d . The objective function of
TMTL-parallel is expressed as

min
βS,β(1)

T
,...,β(d)

T

�(X0, y0,β0) + λ1

d∑

k=1

‖T0β0 − Tkβk‖2
2

+ λ2

d∑

k=0

∥∥∥∥∥X0

(
βk − 1

d + 1

d∑

r=0

βr

)∥∥∥∥∥

2

2

+ μ

d∑

k=0

p∑

j=1

w2
k, j β

2
k, j . (8)

It is a natural extension of TCTL to multiple target domains.
The transfer samples of each target domain are aligned to
those in the source domain in their respective projected spaces.
Each parameter vector is encouraged to resemble an average
parameter vector [7]. In the SEMI term, the shrinkage weight
for variable j in the source domain (w0, j ) is the average of
those in the target domain. By minimizing (8), we can obtain
the prediction parameter vectors for all devices efficiently.

TMTL-serial is specialized for situations such as time-
varying drift. The difference between the parallel and serial
TMTL is that the latter one encourages each parameter vector
to be similar to its previous parameter vector

min
βS,β(1)

T
,...,β(d)

T

�(X0, y0,β0) + λ1

d∑

k=1

‖T0β0 − Tkβk‖2
2

+ λ2

d∑

k=1

‖X0(βk − βk−1)‖2
2

+ μ

d∑

k=0

p∑

j=1

w2
k, j β

2
k, j . (9)

The intuition is to capture the temporal smoothness prior
as in [8]. Note that there are two typical modes to analyze
data streams. In the offline mode, data in all time periods
are analyzed together, which implies that transfer samples
collected in later periods can aid the model transfer process
of former periods. In this mode, models of all periods can
be obtained simultaneously by optimizing (9). The online
mode, on the other hand, requires data in the current period
to be analyzed in real time. This means that only the transfer
samples collected before can be used. In this mode, whenever
a new group of transfer samples are collected, we can re-
optimize (9) to get the latest parameter vector (βd ), then use
it to predict the recent samples.



2310 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 66, NO. 9, SEPTEMBER 2017

Fig. 1. Illustration of the sample collection process in the most general
case. The j th cylinder located in the i th row represents the j th group of
transfer samples measured by device i , which also corresponds to a parameter
vector βi, j . The circles are ordinary samples measured by the device at a
specific time. The arrows indicate the model similarity relationships: the model
at the beginning of an arrow should resemble the model at the end.

C. TMTL-General and the Dynamic Model Strategy

In the most general case, samples can be collected by several
devices in a long period of time, as illustrated in Fig. 1.
So we can go one step further and combine the parallel and
serial TMTL to simultaneously learn all models. In TMTL,
each group of transfer samples corresponds to a model. First,
the initial group of transfer samples measured by the oldest
device (denoted as device 1) is selected as the overall refer-
ence. All the other groups should be aligned with it in their
respective projected spaces, which form the transfer sample
term in the objective function. Second, each model is expected
to be similar to its previous model of the same device, while
the first model of each device should resemble their average
[mean(βk,1)], as shown in Fig. 1.

To deal with time-varying drift, the data stream of a
device is split into discrete batches in the most previous
studies [8], [17] and the discussions above. Each batch corre-
sponds to one fixed model. This strategy loses the information
carried in the exact acquisition time of the samples in the
same batch. The drift within a batch cannot be modeled.
Therefore, we propose a dynamic model strategy to exploit the
information. Assuming that the time-varying drift of a device
is smooth, it is intuitive to also let the model change smoothly
over time. We set the model of device i at time t to be a
function of all models of the same device. A straightforward
method is to interpolate between neighboring models. We find
it better to use a weighted combination as follows:

β i (t) =
∑

j

ci, j (t)β i, j /
∑

j

ci, j (t)

ci, j (t) = exp(−σ(t − ti, j )
2). (10)

where ti, j is the acquisition time of the j th group of transfer
samples of device i . The closer t is to ti, j , the larger the
weight ci, j (t) will be. σ is the window size parameter. The∑

j ci, j (t) in the denominator is a normalization term. When
using this dynamic model strategy, the model for every training

and test sample should be calculated using (10). The mean and
standard deviation values used to normalize variables in SNV
should also be modified according to (10), which we will call
dynamic SNV. These dynamic strategies can make the models
more accurate. Another important function of the strategies
is to deal with noises and outliers in transfer samples. They
can smooth the noise contained in individual models, which
has a similar insight to the ensemble strategy [17]. Details
about TMTL with logistic or squared loss can be extended
from (5) to (7), thus will not be presented here for brevity.

Compared with TCTL [23], TMTL does not limit the num-
ber of models, so that knowledge can be transferred between
multiple domains. Different knowledge transfer paradigms are
defined according to the nature of drift, so that prior knowledge
can be incorporated to improve the accuracy. With the dynamic
model strategy, samples do not have to be split into discrete
batches and noise in neighboring models can be smoothed.

IV. EXPERIMENTS

In this section, we will conduct four experiments on
three data sets to evaluate the performance of the proposed
algorithms. The three data sets contain time-varying drift,
instrumental variation, and both, respectively. Comparison
will be established between our methods and other typical
methods in the fields of machine olfaction and MTL. Different
strategies in our methods will also be explored and analyzed.

A. Gas Sensor Array Drift Data Set

The gas sensor array drift data set is a public dataset1

introduced by Vergara et al. [17], [24]. An e-nose with 16 gas
sensors was utilized to collect the data set over a course
of 36 months. Six kinds of gases (ammonia, acetaldehyde, ace-
tone, ethylene, ethanol, and toluene) at different concentrations
were measured. The total number of samples is 13 910. Each
sample is represented by a feature vector of 128 variables
extracted from the sensors’ response curves [17]. The data
set is split into 10 batches in chronological order. The period
of collection and the number of samples in each batch can
be found in Table I. In this section, the goal is to classify
the type of gases, despite their concentrations. We choose
batch 1 (source domain) as the training set and test on
batches 2–10 (target domains). This evaluation strategy was
also used in [15], [17], and [18] and resembles the situation
in real-world applications.

Fig. 2 shows a scatter map for visual inspection of the time-
varying drift across batches. The samples are projected to a 2-
D subspace using principal component analysis (PCA). It can
be found that the ammonia samples drift roughly to the +x-
direction, whereas the drift of acetaldehyde is small. There
are also some samples that do not follow the general trend of
drift, which implies that the drifting pattern of the samples is
complex and it is hard to directly compensate it [15].

To explain the principle of proposed transfer-sample-based
strategy, we depict the effect of TCTL in Fig. 3. An experiment

1http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+
at+Different+Concentrations
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TABLE I

PERIOD OF COLLECTION AND NUMBER OF SAMPLES OF THE GAS SENSOR ARRAY DRIFT DATA SET [17]

Fig. 2. Example of the drift across batches 1–6 in the gas sensor array drift
data set. Dots and plus signs represent ammonia and acetaldehyde samples,
respectively. Different colors indicate different batches.

Fig. 3. Illustration of the effect of TCTL. Markers in different colors are
samples from different classes, except the black ones, which represent the
transfer samples. Circles are samples from batch 1 (source); Plus signs are
those from batch 2 (target). (a) Samples from both batches are projected by
the source parameter vectors learned by LR. (b) Source samples are projected
by the source parameter vectors learned by TCTL with logistic loss, whereas
the target samples are projected by the target parameter vectors learned by it.

was made with samples of three classes in two batches.
Suppose a LR model is trained to distinguish class 1 from other
classes. The x-axis of Fig. 3 is the coordinate of the samples

projected by the model’s parameter vector. Another LR model
is trained to distinguish class 2 from other classes, which
corresponds to the y-axis. Therefore, if correctly classified, all
samples from classes 1, 2, and 3 should be in the red, green,
and blue regions, respectively. In Fig. 3(a), the LR models
were trained on the source domain and applied on both
source and target domains. We can find that some samples
from the target domain (plus signs) are not in the correct
region. This is because the source model cannot adapt well
on the target domain. In Fig. 3(b), models for the source
and target domains were simultaneously learned using TCTL.
The transfer samples (black circles and plus signs) have been
aligned, which is the principle of TCTL. In this situation, most
samples in both domains lie in the correct regions.

The first step of our methods is choosing transfer samples.
They are not directly provided in the data set, hence need
to be selected from a candidate set. The candidate set of
batch k (k = 2, . . . , 10) was defined as the overlapping
samples in batch 1 and k, namely, the samples of the
same gas and concentration. Then, we used locally linear
reconstruction (LLR) [25], an unsupervised active learning
method, to choose nt transfer samples for each candidate set.
In our experiments, LLR achieved better accuracy than the
Kennard–Stone selection algorithm [26] often used in machine
olfaction and spectroscopy literatures [5], [12], [15]. After
that, the samples in each batch were preprocessed by SNV.
The models for batches 2–10 were learned using TCTL
or TMTL. For TMTL, the serial paradigm and the online
analysis mode were adopted. For a target batch k, the labeled
training samples in batch 1 and the transfer sample groups
of batches 1 to k were fed into (9) with logistic loss. After
prediction, an average classification accuracy was computed.

Fig. 4 shows the average accuracy of TMTL-serial when
parameters λ1 and λ2 are varied in {2−8, 2−7, . . . , 22}. μ was
fixed to 10−3. The number of transfer samples in each batch
was 10. We notice that the accuracy is the highest when λ1 is
neither too small nor too large. λ1 controls the weight of the
transfer sample term. If it is too small, the transfer samples
cannot be aligned well. Meanwhile, putting too much emphasis
on the transfer samples will cause overfitting. The accuracy
degrades when λ2 is large, indicating that the source and target
models cannot be too similar because of the drift.
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TABLE II

CLASSIFICATION ACCURACY OF VARIOUS METHODS ON THE GAS SENSOR ARRAY DRIFT DATA SET

Fig. 4. Impact of the parameters λ1 and λ2 on the average classification
accuracy of TMTL-serial.

Fig. 5. Performance comparison on the gas sensor array drift data set with
varying nt .

Fig. 5 compares TCTL and TMTL-serial with several other
methods, including only preprocessing the features with SNV
(Only SNV) [2], variable standardization [23], MTL based on
temporal group Lasso [8], [27], and RMTL [7]. LLR was used
to select nt transfer samples from the source domain or labeled

target samples from the target domain. The first two methods
standardize each target variable based on the transfer samples
and then use the source models learned by LR to predict
the standardized target samples. Their performances are not
promising possibly because the drift is complex and the
capacity of the feature-level correction methods is limited. The
latter two are MTL methods (with logistic loss function and
linear kernel) based on labeled target samples. The parameters
were tuned by grid search for each result. Their performances
are comparable with TCTL. TMTL-serial has the best accuracy
for each nt . Moreover, TCTL and TMTL have the advantage
of not having to select and label the target samples.

More results of existing methods are listed in Table II.
For “no transfer,” data in batches 2–10 were directly pre-
dicted by the classification model trained on batch 1. Its
accuracy is poor especially for batches with large IDs, which
proves the influence of drift. The results of ensemble, domain
adaptation extreme learning machine source (DAELM-S),
and semi-supervised maximum independence domain adapta-
tion (SMIDA) are copied from the original papers. Although
the ensemble method and DAELM-S achieve good results,
they both need relatively large amount of auxiliary target
samples. DAELM-S requires 30 selected labeled samples in
each target batch. The ensemble method requires all samples
in batches 1 to k − 1 to be labeled when predicting batch k.
SMIDA needs only unlabeled target samples, but its accuracy
is still not satisfactory.

In order to assess the strategies adopted in our methods,
we have tested some possible alternatives, whose results are
listed in the last five rows of Table II. For “TMTL (sim2),” the
proposed model similarity constraint (‖X Sβ1 − X Sβ2‖2

2) is
replaced by ‖β1 − β2‖2

2, which occurs in many MTL papers.
For “TMTL (no SEMI),” the proposed weighted shrinkage
term is replaced by an ordinary shrinkage term with uni-
form weights. TMTL-serial outperforms the two alternatives,
indicating the superiority of the proposed strategies. Besides,
TMTL-serial is slightly better than TMTL-parallel in this
problem. We also ran pairwise t-tests at the 5% significance
level with results shown in the supplementary materials. The
improvement of TMTL-serial is significant compared with
others’ methods, but not significant compared with other
strategies of TMTL and TCTL.
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TABLE III

AVERAGE RMSE ON THE CORN DATA SET WITH DIFFERENT NUMBER OF AUXILIARY SAMPLES

Fig. 6. Scatter plot of the samples measured by the three spectrometers.
Samples are projected to a 2-D subspace using PCA.

B. Corn Data Set

The corn data set is a publicly available data set in
spectroscopy.2 Three near-infrared spectrometers designated
as m5, mp5, and mp6 were involved. Each device was
adopted to measure the moisture, oil, protein, and starch
contents of 80 corn samples. The ranges of the measured
values are 9.377 to 10.993, 3.088 to 3.832, 7.654 to 9.711,
and 62.826 to 66.472, respectively. The wavelength range
is 1100–2498 nm at 2 nm intervals, resulting in 700 variables
for each sample. Fig. 6 illustrates the variation in distribution
of the same samples measured by the three devices.

We follow the experimental setting in [9] and study the cali-
bration transfer from m5 to the other two devices. A four-fold
cross validation was made by assigning every 4th sample to
the test set. In each fold, the transfer samples or labeled target
samples were selected by LLR from the training samples.
Before training, each spectrum was first down-sampled to form
a feature vector with 234 variables, followed by preprocess-
ing with SNV. The four measured values were predicted
separately and an average root mean squared error (RMSE)
was computed. Table III lists the results on the two target
devices when different number of transfer samples/labeled
target samples were used. The parameters were tuned by

2http://www. eigenvector .com/data/Corn/

Fig. 7. Overview of part of the breath analysis data set. Each point denotes
a sample (or a group of transfer samples) collected in a specific time. The
two rows of each class represent samples measured by the two devices, with
the sample sizes labeled on the right. Red plus signs denote the training
samples.

grid search for each result. The results of “RMTL (support
vector regression (SVR))” are copied from [9], which only
provided the results on mp6. TMTL-parallel was applied in
the experiment. It achieves the best performance when the
number of auxiliary samples (nt ) is small. Pairwise t-test
results show that TMTL is significantly better than other
methods except RMTL (SVR). The latter method has smaller
RMSE on mp6 when the nt is larger than 15, which is probably
because the labeled-sample-based method can extract more
information from extra additional labeled samples, whereas
information brought by extra transfer samples is marginal
when nt is large (can also be observed from Fig. 5). RMTL
(SVR) also benefits from an ε-insensitive loss function with
radial basis function kernel. It will be our future work to equip
our methods with more powerful loss functions and kernels.
For “trained on target device,” regression models were trained
and tested on the same device. It can be regarded as an ideal
result for calibration transfer. We find that with the help of
only 10 transfer samples, TMTL can actually outperform it.

C. Breath Analysis Data Set
Breath analysis with e-noses is attracting increasing atten-

tion [6], [28], [29]. Researchers found that some diseases
are related with biomarkers at abnormal concentrations in
exhaled breath [29]. For example, the concentration of acetone
in breath of diabetics is often higher than that of healthy
subjects. With the progress of sensor technology, it is possible
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TABLE IV

SENSITIVITY/SPECIFICITY ON THE BREATH ANALYSIS DATA SET

Fig. 8. Responses of two sensors in all breath samples (blue dots) and
one transfer sample (red triangles). Each point represents the steady response
of the sensor in one sample. Dashed circles mark the (a) outlier in transfer
samples or (b) replacement of the sensor.

to diagnose and monitor diseases by measuring breath samples
with e-noses. It has the advantage of being noninvasive, conve-
nient, cheap, and fast. One big obstacle of this technique is the
drift problem. Solutions based on labeled target samples are
impractical in this case because of the difficulty in collecting
breath samples from patients. Therefore, only transfer-sample-
based methods will be tested in this section.

A breath analysis data set was collected using two
e-noses of the same model [6]. The collection process lasted
for about 500 days starting from 2014. From the data set,
we select five diseases that have been proved to be related
with certain biomarkers in breath, namely, diabetes, chron-
ical kidney disease, cardiopathy, lung cancer, and breast
cancer [29]. Their sample sizes and days of collection are
illustrated in Fig. 7, together with those of the healthy samples
and transfer samples. Transfer sample groups were measured
periodically, with eight preselected standard gas samples in
each group.

This real-world data set suffers from a number of factors
that will cause drift in data distribution, e.g., instrumental
variation, sensor aging, temperature and humidity change,
sensor damage and replacement, and so on. As an example,
we draw the steady-state responses of two sensors in Fig. 8.
The sensitivity of the sensor, shown in Fig. 8(a), gradually
decayed over time, as can be observed from the trend of breath

and transfer samples. For the sensor in Fig. 8(b), however,
the decay was much faster, so we replaced it three times.
It is worth noting that the transfer samples contain noise and
outliers [Fig. 8(a)], which cannot precisely reflect the true
distribution of the data, thus will degrade the accuracy if we
transfer knowledge based on them. One solution is to detect
the outliers according to some prior knowledge. In this paper,
we use the dynamic model strategy in (10) to deal with it.

The experimental settings are as follows. Five binary-class
classification tasks (healthy versus disease) were executed.
Sensitivity and specificity [6] were adopted as the accuracy
metrics in this medical application. To simulate real-world
applications, we used only the first 50 samples collected with
device 1 in each class as training samples (see Fig. 7), others
as test ones. Considering the complexity of the drift and the
noise in transfer samples, we utilized the offline analysis mode,
namely, all groups of transfer samples were used to learn
all models simultaneously. The 9-D feature vector consists
of steady-state responses of nine gas sensors, followed by
dynamic SNV described in Section III-C.

Experimental results are listed in Table IV. The parameters
of each method were tuned by grid search. For methods
except TMTL and “random train + TMTL,” LR was adopted
as the classifier. Multiplicative drift correction (MDC) is a
simplified version of variable standardization which corrects
each variable with a multiplicative factor. It performed better
than variable standardization in this data set. However, the two
transfer-sample-based feature-level correction methods, MDC
and CC-PCA, showed a little improvement over “no transfer.”
The accuracy of TMTL-parallel is not good because time-
varying drift is severe in this data set. In TMTL-general,
the dynamic model strategy was applied since the exact
acquisition time of each sample is known. Forty five mod-
els were learned simultaneously, as there were 45 groups
of transfer samples altogether. The time-specific model for
each training or test sample is a combination of neighboring
models. The window size parameter in (10) was empirically
set to 10−4. We find that this strategy is important for the
data set. If it is not used and each sample is predicted by an
individual adjacent model, the accuracy will be poor. The noise
in transfer samples could be the major cause. The combined
model can smooth the noise. A minor drawback is that it
cannot deal with “abrupt drift,” e.g., sensor replacement. The
accuracy of TMTL is close to “random train,” in which the
50 training samples of each class were randomly selected from
all devices and time periods to include the information of drift
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in the model. If we use TMTL with randomly select training
samples, the accuracy can be further improved, indicating that
TMTL can reduce the influence of drift effectively with the
information contained in the transfer samples. Pairwise t-test
results show that TMTL-general is significantly better than
half of the other methods. However, the insignificant results
are partial because there are only 5 tasks to compare in t-test.

V. CONCLUSION

We propose TMTL to address the drift problem of sen-
sors and devices, with a special focus on machine olfaction.
By drift, we refer to the change of posterior data distribution
caused by instrumental variation, sensor aging, and environ-
mental change. Instead of correcting the drifted signals as
in conventional methods, our method handles drift under the
framework of transfer learning and MTL. The key idea is to
reduce the influence of drift in the target domains by aligning
the transfer samples at the model level.

Different from existing MTL methods depending on labeled
samples, TMTL leverages transfer samples to transfer knowl-
edge from the source domain to the target ones. In our
experiments, it achieved better results, and the number of
transfer samples needed for effective transfer was usually
small (about 10). Besides, transfer samples are not required to
be of the same type with the training and test samples. Thus,
the proposed method is more convenient to use in many real-
world applications. The second feature of TMTL is that it can
simultaneously handle the “discrete” instrumental variation
and the “continuous” time-varying drift. By using the parallel
and serial transfer paradigm and the dynamic model strategy,
the models in different domains are linked to reflect the prior
knowledge about the drift.

Overall, TMTL is a practical algorithm framework to predict
data with complex drift caused by various factors. The robust-
ness of sensor systems (e.g., e-noses) can be greatly enhanced.
Future works may include improving the objective functions
by making more sophisticated assumptions on the structures
of the models and features.
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